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We investigate the phase behaviour of a system of particles interacting
through the exp-6 pair potential, an interaction model that is appropriate
to describe effective interatomic forces under high compression. The soft-
repulsive component of the potential is being varied so as to study the effect
on re-entrant melting and density anomaly. Upon increasing the repulsion
softness, we find that the anomalous melting features persist and occur at
lower pressures. Moreover, if we reduce the range of downward concavity
in the potential by extending the hard core at the expenses of the soft-
repulsive shoulder, the re-entrant part of the melting line reduces in extent
so as it does the region of density anomaly.

Keywords: high-pressure phase diagram; liquid–solid transitions; re-
entrant melting

1. Introduction

At high pressures, a number of elements in the periodic table show a maximum in the
fluid–solid coexistence temperature, followed by a region of re-entrant melting, see,
e.g. Cs, Rb, Na, Ba, Te, etc. [1]. A further pressure increase makes the slope of the
melting line positive again. This behaviour has been called ‘anomalous’, as opposed
to the ‘standard’ behaviour typical of simple fluids, consisting in a regularly
increasing and concave melting curve. The class of substances exhibiting anomalous
melting constantly expands as advances in experimental methods allow to reach
higher pressures. Anomalous melting has been related to a certain degree of softness,
as induced by pressurization, of the interatomic repulsion [2–5]. A similar behaviour
is observed in a completely different type of systems, i.e. polymer solutions and
colloidal dispersions [6–9], where it usually appears in combination with other water-
like anomalies [10,11]. In order to account for these melting oddities, numerous
effective pair potentials were proposed in the past, some of them being even bounded
at zero separation [2,12–19]. Core-softened potentials generally present a region of
downward concavity in their repulsive component [20].

A classical spherically-symmetric potential that is widely used in the realm of high-
pressure physics is the Buckingham, or exp-6 potential [4,21], where the short-range
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repulsion is modelled through a hard-core plus a soft-repulsive exponential shoulder:

uðrÞ ¼

(
þ1, r5 �M
�

��6

h
6e��ðr=��1Þ � � �

r

� �6i
, r � �M

: ð1Þ

Here r is the interparticle distance, � is the depth of the attractive well, � is the
position of the well minimum, � (usually taken in the range 10–15 [22]) controls the
steepness of the exponential repulsion, and �M(�) is the point where the function in
the second line of Equation (1) attains its maximum value. The exp-6 potential
satisfies the core-softening condition, i.e. there exists a range of interparticle
distances where the repulsive force decreases as two particles get closer to each other
[23]. This gives origin to two separate repulsive length scales, i.e. a larger one
associated with the soft repulsion (being effective at the lower pressures) and a
smaller one related to the particle-core diameter �M (dominant at higher pressures).
It has been shown that, upon increasing the pressure P, the melting temperature of
the exp-6 system passes through a maximum followed by a region of re-entrant
melting; upon further compression, the melting line eventually recovers a positive
slope [23]. This behaviour is related to the existence of two different patterns of
short-range order in the system: an open one (associated with the soft-repulsive scale)
and a compact one (associated with the hard core). The re-entrance of the fluid phase
at intermediate pressures (and for not too low temperatures) follows from the
packing frustration induced by the interplay between these two local structures.

To better understand the role of the soft repulsion for the occurrence of
anomalous melting, we investigate how the phase behaviour of the exp-6 model
changes when varying the softness of the potential. This variation can be achieved in
two ways. The most direct one is by changing the exponent � controlling the
steepness of the exponential repulsion. A different way of varying the degree of
softness is to define, for fixed �, a whole sequence of modified exp-6 interactions by
shifting to higher distance, the point where the repulsion changes from hard-core to
exponential. For the original exp-6 interaction, this crossing point occurs at
rcross¼ �M; taking rcross to be larger than �M, the ensuing repulsion turns out to be
softer than the exp-6 law.

This article is organised as follows: in Section 2, we introduce the numerical
approach that is used to construct the phase diagram of the system; Section 3 is
devoted to a discussion of the results while further remarks and conclusions are
deferred to Section 4.

2. Monte Carlo simulation

We perform Monte Carlo (MC) simulations of the exp-6 model in the
isothermal–isobaric (NPT ) ensemble, where N is the number of particles, P is the
pressure and T is the temperature, using the standard Metropolis algorithm and
periodic boundary conditions. The simulations are carried out for a number N¼ 432
(bcc) and N¼ 500 particles (fcc) in a cubic box (we checked that finite-size effects are
negligible). For each pressure P and temperature T, equilibration of the sample
typically takes some 104 MC sweeps, a sweep consisting of N attempts to change the
position of a random particle, followed by one attempt to modify the box volume.
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The maximum random displacement of a particle and the maximum volume update

in a trial MC move are adjusted for every sweep during the run so as to keep the

acceptance ratio of the moves as close to 50% as possible, with only small excursions

around this value. For given NPT conditions, the relevant thermodynamic averages

are computed over a trajectory of length ranging from 5� 104 to 105 sweeps.
In order to locate the melting line, we generate a series of isobaric paths starting, at

very lowT, from perfect crystals, which are then heated gradually until melting occurs.

This is evidenced by the abrupt change in, e.g. the energy (Figure 1) as well as by the

rounding off of the peaks of the radial distribution function (RDF). In fact, by this so-

called ‘heat-until-it-melts’ (HUIM) approach only the temperature Tþ of maximum

solid overheating is calculated, which might be considerably larger than the melting

temperature Tm [24]. Similarly, the maximum fluid supercooling temperature T� is

generally far fromTm, in fact, farther thanT
þ. For a Lennard–Jones system, Luo et al.

[24] found that the extent of maximum overheating/supercooling is only weakly

pressure-dependent; moreover, they suggest the empirical formula Tm ¼ T þ þ T �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T þT �
p

for extracting Tm from the boundaries of the hysteresis loop. Another

Figure 1. Modified exp-6 potential with rcross¼ 0.5 at P¼ 1000: the bcc-fluid hysteresis
loop for the excess energy (top panel) and the two-body entropy [24] (bottom panel) at
P¼ 1000. Pressure P and temperature T and expressed in units of �/�3 and �/KB, respectively.
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possibility, which we prefer because it does not rely on a specific system, is to appeal to
the Landau theory of weak first-order transitions [25], which gives the relation
Tm¼ (T�þ 8Tþ)/9. In all cases here examined, we have verified that the deviation of
Tþ from the Landau-type estimate of Tm is small (6% at the most) and almost
insensitive to pressure. This indicates that the overall shape of the coexistence curve,
which we are more interested in, is correctly got by the simple HUIM method.

In addition, we calculate the pair excess entropy for each state point:

s2 ¼ �
kB
2
�

Z
dr½ gðrÞ ln gðrÞ � gðrÞ þ 1�, ð2Þ

where kB is Boltzmann’s constant, � is the number density, and g(r) is the RDF.
�s2 effectively characterises the degree of pair translational order in the fluid, as such
providing a good indicator of the melting transition, much better than the density
which has a larger noise-to-signal ratio (Figure 1, bottom panel) [26].

An independent estimate of the location of the melting line is obtained by the
Lindemann criterion [27,28]. The Lindemann ratio, L, is defined as the mean root
square displacement of the particles about their equilibrium lattice positions, divided
by the nearest-neighbour distance a:

L ¼
1

a

1

N

XN
i¼1

DRið Þ
2

* +1=2
, ð3Þ

where the brackets h� � �i denote an average over the MC trajectory. The Lindemann
rule states that the crystal melts when L becomes larger than some threshold value
Lc, which is known to be 0.15–0.16 for a fcc solid and 0.18–0.19 for a bcc solid
[29,30]. As we shall see below, the results obtained by the HUIM approach and by
the Lindemann rule compare fairly well with each other.

3. Results and discussion

We first computed the exp-6 phase diagram for �¼ 10 (Figure 2). As anticipated, we
approximate the melting temperature Tm with the temperature Tþ of maximum solid
overheating, assuming that the difference between the two is indeed minute in
relative terms and almost the same at all pressures. By comparing the phase diagram
of Figure 2 with that for �¼ 11, reported in [23], we observe that the overall shape of
the melting line is similar, with the fluid–solid coexistence line passing through a
maximum at temperature TM and pressure PM. When increasing pressure at a
sufficiently low temperature T5TM, the initial fluid system becomes denser and
denser until it crystallises into a fcc solid. Upon increasing P further, the fcc solid
undergoes a transition to a bcc solid. This transition is related to a decrease in the
mean nearest-neighbour distance with increasing pressure, which brings particles to
experience inner regions of the interaction potential where the repulsion becomes
softer. As the pressure further increases, the bcc solid undergoes re-entrant melting
into a denser fluid. At very high pressures, far beyond the region shown in Figure 2,
the fluid eventually crystallises into a fcc hard-sphere-like solid. In the fluid region
above the re-entrant melting line, decreasing temperature at constant pressure leads
first to system compression, and then, contrary to standard behaviour, to an
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expansion for further cooling (Figure 3). The locus of points where the density

attains its maximum value encloses a region where the density behaves anomalously

(Figure 2). Within this region, open local structures are more favoured than compact

ones, causing a diminution of the number of particles within a given volume with

decreasing T. A similar density anomaly has been observed in a number of

substances (water being the most familiar) as well as in model systems characterised

by a soft repulsion [19,31–33].
We computed the RDF at a temperature slightly larger than TM, in the pressure

range where re-entrant melting occurs (Figure 4). At low pressure, the soft repulsion

is quite effective and particles cannot stay too close to each other. Upon increasing

pressure at constant temperature, more and more particles are able to overcome the

soft repulsion, thus giving origin to a peak close to the hard core whose height

increases with pressure. Meanwhile the second and third peak become lower,

reflecting the loss of efficacy of the soft-repulsive length scale. Thus, an increase of

pressure causes the gradual turning off of the soft-repulsive length scale in favour of

the smaller length scale associated with the inner core. The observed behaviour

differs significantly from that of simple fluids, where all the peaks of g(r) get higher

as pressure grows at constant T.
We now follow a different approach for varying the softness of the exp-6

potential, one in which the parameter � is left unchanged. An important feature of

the exp-6 potential, with regard to its soft nature, is the existence of a range of

interparticle distances where the repulsive force decreases as two particles get closer.

Figure 2. (Colour online). Phase diagram of the exp-6 model for �¼ 10. Pressure P and
temperature T are expressed in units of �/�3 and �/kB, respectively. Melting points, located by
the Lindemann criterion, are represented as full green dots. The boundary between the bcc and
fcc solids (black dotted line) is roughly obtained by drawing a straight line from the full square
at T¼ 0 (obtained through an exact total-energy calculation) to the square, lying on the
melting curve, where the value of the Lindemann ratio switches from 0.15–0.16 (fcc) to 0.18–
0.19 (bcc) [29,30]. We also plot the fluid–solid coexistence locus as obtained by the HUIM
criterion (blue open dots), which indeed agrees well with the Lindemann-based estimate. The
locus of density maxima in the fluid phase is marked by red diamonds. All lines in the figure
are guides to the eye.
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Figure 3. Exp-6 model for �¼ 10: fluid number density �(in units of ��3) as a function of
temperature for P¼ 800, 900, 1000, 1200 (full dots). All lines are fourth-order polynomial fits
of the data points.

Figure 4. (Colour online). Exp-6 model for �¼ 10: RDF g(r) for T¼ 5 and three pressures,
P¼ 150 (red solid line), 750 (blue dashed line), 1500 (green dash-dotted line).
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This interval corresponds to the concave part of the potential, which, in the original

exp-6 potential, extends from �M up to the inflection point �F. In the exp-6 model,

the value rcross of the interparticle distance where the repulsion changes from hard

core to soft is �M. Instead, we allow here rcross to increase progressively, thus

shrinking the interval where the potential is downward concave, until this interval

disappears when rcross reaches �F (Figure 5). In this way we are able to vary the

relative importance of the hard and soft components of the exp-6 repulsion.
We have calculated the melting line for a number of ‘modified’ exp-6 potentials

with �¼ 10 by the HUIM approach, (Figure 6). For increasing rcross, the portion of

the melting curve preceding the maximum (i.e. for P5PM) remains substantially

unaltered, while that having negative slope becomes more and more flat until, for a

value of rcross slightly smaller than �F, the slope dT/dP becomes everywhere positive

and the melting-curve maximum disappears. Upon further increasing rcross, the part

of the melting line for P4PM becomes steeper. This behaviour clearly underlines

the fundamental role played by the soft-repulsive component of the potential in

giving origin to re-entrant melting. We stress that the re-entrant region, in fact,

disappears for a value of rcross being a little smaller than �F, that is when the potential

has still an interval of downward concavity. This suggests that the existence of a

concave repulsive region in the potential, while being crucial for re-entrant melting, is

not strictly sufficient for its occurrence. This result is consistent with the findings of a

recent investigation of the phase behaviour of a potential consisting in a smoothened

hard core plus a repulsive step, showing that a melting line with a maximum and a

re-entrant portion occurs only for a sufficiently wide repulsive shoulder [34].
As rcross increases, the region of anomalous density behaviour becomes less

evident until it disappears completely, at least in the stable fluid phase, when the

slope dT/dP becomes everywhere positive (Figure 7). Actually, with increasing rcross,

the density anomaly migrates to lower temperatures, while the melting line moves to

ε

Figure 5. (Colour online). Modified exp-6 potential for �¼ 10. The vertical lines correspond
to different values of rcross (see text for explanation): 0.4659� �M (black solid line), 0.5 (red
dashed line), 0.525 (blue dash-dotted line), 0.53442� �F (green dotted line), 0.55 (orange
double-dash dotted line). The full green dot marks the point, �F, where the second derivative
of the potential vanishes.
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high temperatures. As a result, the line of maximum density is swallowed up by the
solid phase (in fact, for sufficiently large rcross, the density maximum disappears
completely). A similar behaviour has recently been observed for a family of isotropic
pair potentials with two repulsive length scales [35]. The close relation between the
occurrence of re-entrant melting and that of the density anomaly (be it in the stable
or metastable fluid phase) points to a common origin for the two. Indeed, it appears
that a prerequisite for both phenomena is the existence of two repulsive length scales,
which in turn gives rise to two different patterns of local order in the system.
Therefore, the crossover between low-density/low-temperature open structures and
high-density/high-temperature compact ones is at the basis of the remelting of the
solid into a denser fluid as well as of the decrease of the density upon isobaric
cooling.

4. Conclusions

In this article, we have studied how the melting behaviour of a system of particles
interacting through the exp-6 potential depends on the repulsion softness. We find
that, by varying the softness parameter �, the anomalous features of the phase
diagram do not change qualitatively while the typical pressure and temperature
where re-entrant melting occurs change considerably. As the repulsion gets softer, i.e.
as � decreases, the re-entrant-melting region moves to smaller pressures and
temperatures. In fact, a softer repulsion and the associated length scale lose efficacy
more rapidly with increasing pressure and temperature.

We have shown that the feature of the exp-6 potential that is crucial for the
occurrence of anomalous melting is the existence of a concave region in the repulsive
part of the potential. By progressively reducing the extent of this interval, in fact, the

Figure 6. (Colour online). Phase diagram of the modified exp-6 potential for �¼ 10 and for
several values of rcross: 0.4659� �M (black solid line), 0.5 (red dashed line), 0.525 (blue dash-
dotted line), 0.53442� �F (green dotted line) and 0.55 (orange double-dash dotted line). The
lines being shown are polynomial fits of the simulation data (full symbols).
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negatively-sloped portion of the melting line as well as the P–T region where the
density is anomalous tend to disappear. This is an indication of the close relation
between re-entrant melting and density anomaly, both phenomena being linked to
the turning on and off of the two repulsive length scales in the system.

In spite of the modellistic nature of the system investigated, the sensitive
dependence of the anomalous-melting region on the steepness of the repulsive
interaction has a counterpart in real systems. By looking at the phase behaviour of
elements displaying anomalous melting, it is possible to observe that the pressures
and temperatures where the anomalies occur greatly vary from one element to the
other. For example, the maximum in the melting line is at about 2GPa for Cs [36],
30GPa for Na [37] and is predicted around 100GPa for H [38]. These experimental

Figure 7. Modified exp-6 potential for �¼ 10 and rcross¼ 0.5: reduced number density of the
fluid as a function of temperature for P¼ 1000 and 1200 (full triangles). All lines are fourth-
order polynomial fits of the data points.
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and theoretical results can be rationalised by considering that atoms with more
electrons are more susceptible, at least within the same chemical family, to pressure-
induced structural softening. In addition to alkali metals, this trend is also observed
for rare gases [39].
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